Regression recap |

Revisiting aspects of regression models

that we will need for CFA and SEM



Regression recap |

Today's goal:

(50 over methods that we learned in M&E | that will be
useful for understanding CFA and SEM.

Outline:
— Covariance and correlation
— Linear regression

— Non-linear regression

— Bootstrapping



Covariance and correlation

An explanation



Covariance matrix

A B C D E F
""""""" A 225 206 08 168 088 081
B 206 720 171 312 104 052
""""""" C o8 171 o0e4 077 082 017
""""""" b 1es 812 | 077 1089 298 160
B 088 104 032 293 144 054

...............................................................................................................................................................................................................



Correlation matrix

A B C D E -
""""""" A 100 078 071 034 049 034
B o7 100 079 035 032 032
""""""" C 071 079 100 029 033 035
""""""" b 08« 08 029 100 074 081
6 o049 0% 03 074 100 075

...............................................................................................................................................................................................................



Modeling data

A model is a way to explain User satistfaction

or summarize the data 2

The mean is a model :

The quality of the model 0
depends on how well it fits :
the data !

VWe can measure the 2

) O 5 10 15 20 25 30
deviance between the

model and the data

Search results



Modeling data

errori = xj — mean User satisfaction
2
SS = Derror? .
1
5S = sum of squared e
errors o
e
s2= SS/(N-1) ]
sZ = variance .

i i O 5 10 15 20 25 30
s = standard deviation

Search results

N-1 = degrees of freedom



Why N-1?

Let's say you have 4 data points:
1,3, 4,8
Mean: 4

I you know the mean, how many data points are “free’?

Answer: Only three!

Once you know the first three, you will know the fourth
one as well because the mean needs to be 4!

(1+3+4+x)/4 = 4 —> x has to be 8!



Variance

User satisfaction

Variance is the variation of 2

the data around a model e

(e.g. the mean) | e
O

s2 = 3 (xi — meany)?/(N-1) e

|t is the sum of the error in x
times the error in x, divided
by the degrees of freedom

-2
5 10 15 20 25 30

Search results



Covariance

Covariance measures the relationship between the
variations of two variables, x and y

cov(xy) = 2 (xi — meany)(yi — meany)/(N-1)

|t is the sum of the error in x times the error in y, divided
by the degrees of freedom



Covariance

Covariance measures the
relationship between the 2
variations of two variables, x
and y

COV(X,y> = Z(Xi — meanx) i eyo(neg)|
(yi — meany)/(N-1) |

|t is the sum of the error in x
times the error in y, divided
by the degrees of freedom



Correlation

Standardization:

Ve can standardize any deviation by dividing it by the

standard deviation of the measure (v/variance)

't we want to standardize the covariance, we divide by
both the standard deviation of x and the standara
deviation of v.

The resulting metric is the correlation coefficient:

= cov(xy)/sxsy = 2.(xi — meany)(yi — meany)/(N-1)ss,



Correlation

Which of these two graphs shows the strongest correlation?

2
2




Co

rrelation types

Pearson: continuous x continuous

Biserial and Point-

biserial: dichotomous x continuous

Doint-biserial: o

ichotomy is strict (e.q. dummy variable)

Siserial: dichotomy represents an underlying continuous

trait (e.q. yes/no decision)

Phi and tetrachoric: dichotomous x dichotomous

I he latter assumes underlying an underlying continuous

tralt



Correlation types

Polyserial: categorial x continuous
Polychoric: categorical x categorical

Spearman Rho: ordered x ordered



Partial correlation

Unique Variance Accounted
for by Revision Time

Vanance Accountad for by Exam
both Exam Anxiaty and Performance
Revision Time

-----------

Unique Varance Accountad Exam Anxiaty
for by Exarm Anod eby R —




Partial correlation

The correlation between Exam score and Anxiety, without
the part that could be explained by (i.e. controlling tor)
Revision time

The correlation between Exam score and Revision time,
controlling for Anxiety

Reavision Hevision

N

|
- =

[ Exam i( _ ){ Anxiety Exam K. ){ Anxiety ‘

Fartial Correlation Semi-Partial Correlation




Partial correlation

Partial correlation: a/(a+d) X1

Proportion of what is left
after taking out X>

Part correlation: a/(a+b+c+d) a

Proportion of total after b d
taking out X;

Standardized regression
coefficients are part

correlations X
2



Linear regression

an explanation



Linear regression

User satisfaction

Any type of model: )

outcome: = model + error; |

outcome

Linear regression: model

[ he modelis a line with
an intercept (a) and a

slope
slope (b) . P
o\ 5 10 15 20 25 30
Yi =a-+t bXI T € Search results

intercept



Finding the best line

Yi =a+t in + € User satisfaction

a and b are chosen so that 2
the deviations (residuals)
are minimizead

We know this! GGeneral:

deviation =

> (observation; — model)?

O 5 10 15 20 25 30
(Goal: minimize sum of Search results
squared errors (S5r)



Goodness of fit

User satisfaction

How good is the model? 2

Ve can use deviation for :
this as welll

Compare against the
deviation of the simplest
model .

O 5 10 15 20 25 30

In this case: the mean
Search results



Goodness of fit

Total sum of squares (SSt)

Squared e from the mean

User satisfaction

2

mean e

mean e

mean e

O 5 10 15 20 25 30

Search results



Goodness of fit

Total sum of squares (SSt) User satisfaction

Squared e from the mean 2

Residual sum of sq. (S5r) 1

Squared e from the model 4

model e

model e

model e

O 5 10 15 20 25 30

Search results



Goodness of fit

Total sum of squares (SSt)

Squared e from the mean

Residual sum of sq. (S5r)

Squared e from the model

Model sum of squares (55Sm)

SSt = 557

User satisfaction

O 5 10 15 20 25 30

Search results



Goodness of fit

R-square model fit User satisfaction
R2-SSm [ SSt :

Amount of variation in Y
explained by the model

Note: In simple regression

(one X), R2 = 1,2 !

O 5 10 15 20 25 30

Search results



Multiple Regression

outcome; = model + error;

Multiple regression:

I he modelis a line with an intercept (a) and several slopes

(br...bn)
Yi=a+biXii+baXoi+ ...+ bnXni + €

1 his means you can predict satistaction using usability and
gender, in each case controlling for the other variable

Note: bs are partial correlations (not the same as r!)



Multiple Regression

E.g.: satistaction; = 1.00 + 2.00™usability; + 1.50*gender; + e

~or every 1 point increase in usability, satisfaction is

expected to increase by 2 points, contro

Controlling for usa
expected to be 1.5

ing for gender

bility, the satisfaction

hoints higher than for

for males (1) is
females (0)



Multiple Regression

Why “controlling for™?

T here may be a difference in usability between males and
females!

E.g. it males’ usability is 0.5 points higher on average, then
the males in our sample are expected to have a 1.5 + 2*0.5 =
2.5 point higher satistaction

1.5 points because of their gender, 1 point because of their
higher average usability



Interaction effects

satisfaction; = 1.00 + 2.00usability; + 1.50"gender; +
1.20*usabilityi"genderi + e

~or temales (0), for every 1 point increase in usability,
satisfaction is expected to increase by 2 points

At usability = O, the satisfaction for males (1) is expected to
he 1.5 points higher than for females (0)

—or males (1), the effect of usability is 1.2 points higher than
for temales (i.e. 3.2 points per one point of usability)

—or a 1-point higher usability, the effect of gender is 1.2
hoints higher (i.e. 2.7 points difference at usability = 1)




Comparisons

Say, satistaction; = 1.40 + 2.00*usability; + 1.30*control; + e

Can you compare the effect of usability with the effect of
control?

Depends on the scalel

Solution: standardize!
b*SDy/SDx

relative predictive power



Goodness of fit

R2=55m [ SSt
Same as before, but R? is now called the "multiple R?”
Combined effect of all predictors

Jotal variance in Y explained by all Xes in the model

Note: R2 is the sum of part correlations (plus overlap)

tis also the square of the correlation between Y and the
redicted value of Y




Testing a predictor

|t a predictor is bad, its slope

(b) will be almost zero (like
the mean)

A good predictor has a
slope that is significantly
ditterent from zero

Compare slope (b) against

variability of slope (SEb):
t=b/SEb
with df =N -p -1

-2

User satisfaction

O 5 10 15 20 25 30

Search results



p-value

D is the percentage of times you'd expect a result of this

magnitude or larger it there was actually no eftect

\

\

ot t
ot t

e

e

Dropability t

Dronapility t

that HO is true)

\

\

Ot

Ot

-t
1-t

e

e

OroPab

OroPab

he effect happened by chance

hat you incorrectly rejected HO (or

ity that HTis true

ity that you find the same effect again

Note: any statistical test assumes that the null hypothesis is

true (and then checks how unlikely the observed sample is).



Some assumptions

No measurement error (this problem can be fixed with SEM)

Crrors in Xs result in biased predictors (can be either
direction)

Crrorin Y results in lower R-square, larger SD, so larger
error and lower beta (not B)

Eqg.: we have a variable S measuring trait Y with 36% error

| his is random noise that does not measure Y

Result: no regression with S as dependent can have an
R-squared > 0.64!



Any s.e. will be attenuated
by the error of S!

Take for instance this X,
which potentially explains
25% of the variance of Y...

it only explains 16% of
the variance of S

..and the effect is non-
significant!

Measurement error

2=0.25
b =0.50, s.e. = 0.24

>
Z =2.08,p =0.038

2=0.16
b =0.50, s.e. =0.30

>
/=1.67,p=0.096



Measurement error

R2 = 0.16/0.64

If we could use Y instead of b = 0.40/V/(.64) =0.25

=0.50,s.e.=0.24
S, we can get much more >

precise tests Z=2.08,p=0.038
AVE = 0.64




Some assumptions

No variables correlated with both X and Y should be left out
(still a problem in SEM)

This is called “suppression”

Usually results in overestimation, e.qg. shoe size and
intelligence (omitted: age)

Can also result in underestimation, e.g. ice cream sales
and date (omitted: hemisphere)

Can even result in sign switching (negative suppression):
race and arrests (omitted: police profiling)



Some assumptions

Outcome should be quantitative, continuous, unbounded

Not true for:
— yes-no guestions
— counts (e.g. of clicks)

— 5-point rating scales

Otherwise:
— Non-linear regression

— Bootstrapping



Non-linear regression

logistic, poisson, ordered-logistic



Logistic regression

Linear regression:

Yiza+bi Xyi+boXoi+ .+ biXi+ e

What if Y is binary (0 or 1)?
We can try to predict the probability of Y=1 — P(Y)

However, this probability is a number between 0 and |

-or linear regression, we want an unbounded linear Y'!

Can we find some transformation that allows us to do this?

Yes: P(Y)=1/(+eY)



Logistic regression

P(Y) =1/ (1+e™)

Conversely: o.;
U-n(POOJO-PCY)) 08
0.6
Interpretation: = 05
POY))(=P(Y))isthe odds o
of Y 0.2
0.1
Therefore, U is the log 0 0=

odds, or logit of Y

-5

4 -3 -2-1 0 1 2 3 4 5
U



Logistic regression

Since U is unbounded, we can treat it as our regression
outcome:

Ui = |ﬂ<p<Y|>/<1—p<Y|>>> =Yi=a+ b1 Xy + b Xo + .+ beXy +

€

We can always transtorm it back to P(Y}) it we want to:
p<Y|> . / (1 +e-(a+b1IXTi+b2X2i+ .+ blXki + ei)>



Log-likelihood

ow do we assess the fit of a logistic regression?

We calculate the log-likelihood, which is a type of residual

Log-likelihood = X (Y*In(P(Y?) + (1=Y)* In(1-P(Y)))

where Yiis the observed value, and P(Y}) is the predicted
value




Log-|

ikelihood

Log-likelihood = > (Yi* In(P(Y?)) + (1=Y)* In(1-P(Y)))

It Yi =1, then this simpli

which is zero when t

fies to In(P(YY))

he prediction is correct (P(Y7)=1) but

gets a large (negative) value it the prediction is incorrect

(P(Y)is closer to 0)

I Yi=0, then this simpl

ifies to In(1-P(Y}))

which is zero when the prediction is correct (P(Y1)=0) but
gets a large (negative) value it the prediction is incorrect

(P(Yi)is closerto 1)



Deviance (-2LL)

A more useful measure is deviance (a.k.a. —2LL)

-2 " log-likelihood

Ditterence can be used to compare nested models

Likelihood ratio: X? = =2 Lbaseline — —2LLnew
Chi-square distribution with knew — kbaseline df

We will use this a lot in CFA and SEM to compare ditferent

models!



Coefficients

How to interpret the b coefficients?

b is the increase in U for each increase of X

b is the increase in In(P(Y)/(1-P(Y))) for each increase in X
eb is the ratio of P(Y)/(1-P(Y)) for each increase in X

ebis the odds ratio




Coefficients

Odds ratio examples:

If e>>1: The odds of Y are eP times as high for each increase

in X

£.g.e”=3: The odds of Y are 3 times as high for each
increase in X

f eb < 1: The odds of Y are 1/eP times as low for each increase

in X

£.g.eP = 333 The odds of Y are 3 times as low for each
increase in X



Coefficients

If eb = 1.xx: each 1 ptincrease in X leads to a xx% increase in

the odds of Y

£.g.eP=130: The odds of Y are 30% higher for each
increase in X

If eP = 0.xx: each 1pt increase in X leads to a (100-xx)%
decrease in the odds of Y

eb = 070: The odds of Y are 30% lower for each increase in

X



Problems

Some times a logistic regression does not converge

You will get weirdly large standard errors

1. You have no or

[ hisis especia

ittle data for some combinations of Xs

v problematic when Xs are nominal

2. One or a combination of Xs are a perfect predictor of Y

| he odds ratios are infinite!

Solution:

Collect more data, or use a simpler model!



Poisson regression

Count variables often look
like this 16

Examples: # of purchases,

N

# of clicks, time™, price”

Not normal, heteroscedastic!

N
N
N

Interaction time (min)
0o

Can we find some

N\

transformation that makes
this work? O

O 5.333 10.667 16
Y - AU
YGS. Y =€ Level of commitment



Coefficients

How to interpret the b coefficients?

b is the increase in U for each increase of X

D is the increase in the log rate of Y for each increase in X
ebis the ratio of rate Y for each increase in X

eb is the rate ratio

Why the ratio?
b = log(ratex) — log(ratey) = log(ratex [ ratey)

therefore, e® = rate. [ rates



Ordered logistic

Quuestion: | only act to satisfy immediate concerns, figuring
the future will take care of itself.”

Answer categories:
1=extremely uncharacteristic
2=somewhat uncharacteristic
S=uncertain
4=somewhat characteristic

5=extremely characteristic



A problem...

This is ordinal, not intervall

s the difference between “extremely uncharacteristic” ana

somewhat uncharacteristic’ the same as the difference
between “uncertain’ and somewhat characteristic ¢

Also, likely not very normally distributed!

How can we solve these problems?



Logistic regression

1
0.9
0.8
0.7
06 , ,
S g5 We predict O we predict 1
0.4
0.3
0.2
0.1
O S
5 4 -3 -2 -1 0 1 2 3 4 5

U




@ Ordered logistic




Coefficients

The model estimates intercepts for each threshold

112, 2|3, 3|4, 4|5

These thresholds are the log odds of any person having at
least this value

How to interpret the b coefficients?
eb is the odds ratio for a Tpt increase in X

e.g. it the odds ratio is 140, then the odds of a higher value
increase by 40% if X is 1 higher



Bootstrapping

as a way to solve problems with normality



Bootstrapping

What it we have problems? (e.g. heteroscedasticity, non-
normality, outliers, non-linearity)

Use bootstrapping!

In CFA and SEM, we are going to use bootstrapped results
by default



Bootstrapping

1. Treat your sample like a population of size N

2. Sample N items (with replacement!) from this population
3. Calculate the test statistic on this sample

4. Repeat MANY times (like, 1000 times)

5. Get the SE and confidence interval from the data

~or 95% C |- order the data, take the value of item # 25
(lower bound) and item # 975 (upper bound)



“It is the mark of a truly intelligent person
to be moved by statistics.”

George Bernard Shaw




