
Regression recap I
Revisiting aspects of regression models  

that we will need for CFA and SEM



Regression recap I

Today’s goal: 
Go over methods that we learned in M&E I that will be 
useful for understanding CFA and SEM. 

Outline: 

- Covariance and correlation 

- Linear regression 

- Non-linear regression 

- Bootstrapping



Covariance and correlation
An explanation



Covariance matrix
A B C D E F

A 2.25 2.96 0.85 1.68 0.88 0.31

B 2.96 7.29 1.71 3.12 1.04 0.52

C 0.85 1.71 0.64 0.77 0.32 0.17

D 1.68 3.12 0.77 10.89 2.93 1.60

E 0.88 1.04 0.32 2.93 1.44 0.54

F 0.31 0.52 0.17 1.60 0.54 0.36



Correlation matrix
A B C D E F

A 1.00 0.73 0.71 0.34 0.49 0.34

B 0.73 1.00 0.79 0.35 0.32 0.32

C 0.71 0.79 1.00 0.29 0.33 0.35

D 0.34 0.35 0.29 1.00 0.74 0.81

E 0.49 0.32 0.33 0.74 1.00 0.75

F 0.34 0.32 0.35 0.81 0.75 1.00



Modeling data
A model is a way to explain 
or summarize the data 

The mean is a model 

The quality of the model 
depends on how well it fits 
the data 

We can measure the 
deviance between the 
model and the data

User satisfaction

-2

-1

0

1

2

Search results

0 5 10 15 20 25 30

e
e

e



Modeling data
errori = xi – mean 

SS = ∑errori2 

SS = sum of squared 
errors 

s2 = SS/(N-1) 
s2 = variance 
s = standard deviation 
N-1 = degrees of freedom
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Why N-1?
Let’s say you have 4 data points: 

1, 3, 4, 8 
Mean: 4 

If you know the mean, how many data points are “free”? 

Answer: Only three! 
Once you know the first three, you will know the fourth 
one as well, because the mean needs to be 4! 
(1+3+4+x)/4 = 4 —> x has to be 8!



Variance

Variance is the variation of 
the data around a model 
(e.g. the mean) 

s2 = ∑(xi – meanx)2/(N-1) 

It is the sum of the error in x 
times the error in x, divided 
by the degrees of freedom
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Covariance

Covariance measures the relationship between the 
variations of two variables, x and y 

cov(x,y) = ∑(xi – meanx)(yi – meany)/(N-1) 

It is the sum of the error in x times the error in y, divided 
by the degrees of freedom



Covariance
Covariance measures the 
relationship between the 
variations of two variables, x 
and y 

cov(x,y) = ∑(xi – meanx) * 
(yi – meany)/(N-1) 

It is the sum of the error in x 
times the error in y, divided 
by the degrees of freedom
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Correlation

Standardization: 
We can standardize any deviation by dividing it by the 
standard deviation of the measure (√variance) 
If we want to standardize the covariance, we divide by 
both the standard deviation of x and the standard 
deviation of y. 

The resulting metric is the correlation coefficient: 

r = cov(x,y)/sxsy = ∑(xi – meanx)(yi – meany)/(N-1)sxsy



Correlation
Which of these two graphs shows the strongest correlation?
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Correlation types
Pearson: continuous x continuous 

Biserial and Point-biserial: dichotomous x continuous 
Point-biserial: dichotomy is strict (e.g. dummy variable) 
Biserial: dichotomy represents an underlying continuous 
trait (e.g. yes/no decision) 

Phi and tetrachoric: dichotomous x dichotomous 
The latter assumes underlying an underlying continuous 
trait



Correlation types

Polyserial: categorial x continuous 

Polychoric: categorical x categorical 

Spearman Rho: ordered x ordered



Partial correlation

FIGURE 6.8 Diagram showing the principle of partial correlation

6.6.2.  Partial correlation using R 
We will use the examData2 dataframe again, so if you haven’t got this loaded then execute these
commands:
examData = read.delim("Exam Anxiety.dat", header = TRUE)
examData2 <- examData[, c("Exam", "Anxiety", "Revise")]

This will import the Exam Anxiety.dat file and create a dataframe containing only the three
variables of interest. We will conduct a partial correlation between exam anxiety and exam
performance while ‘controlling’ for the effect of revision time. To compute a partial correlation
and its significance we will use the pcor() and pcor.test() functions respectively. These are part of
the ggm package, so first load this:

library(ggm)



Partial correlation
The correlation  between Exam score and Anxiety, without 
the part that could be explained by (i.e. controlling for) 
Revision time 

The correlation  between Exam score and Revision time, 
controlling for Anxiety

FIGURE 6.9 The difference between a partial and a semi-partial correlation

CRAMMING SAM’S TIPS Partial and semi-partial correlation

A partial correlation quantifies the relationship between two variables while controlling for the effects
of a third variable on both variables in the original correlation.
A semi-partial correlation quantifies the relationship between two variables while controlling for the
effects of a third variable on only one of the variables in the original correlation.

6.7. Comparing correlations 

6.7.1.  Comparing independent rs 
Sometimes we want to know whether one correlation coefficient is bigger than another. For
example, when we looked at the effect of exam anxiety on exam performance, we might have been
interested to know whether this correlation was different in men and women. We could compute
the correlation in these two samples, but then how would we assess whether the difference was
meaningful?

SELF-TEST

 Use the subset() function to compute the correlation / I V coefficient
between exam anxiety and exam performance in men and women.

If we did this, we would find that the correlations were rMale = –.506 and rFemale = –.381.



Partial correlation
Partial correlation: a/(a+d) 

Proportion of what is left 
after taking out X2 

Part correlation: a/(a+b+c+d) 
Proportion of total after 
taking out X2 

Standardized regression 
coefficients are part 
correlations

Y

X1

X2

a
b
c d



Linear regression
an explanation



Linear regression

Any type of model: 
outcomei = model + errori 

Linear regression: 
The model is a line with 
an intercept (a) and a 
slope (b) 

Yi = a + bXi + ei
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Finding the best line
Yi = a + bXi + ei  

a and b are chosen so that 
the deviations (residuals) 
are minimized 

We know this! General: 
deviation =  
∑(observationi – model)2 

Goal: minimize sum of 
squared errors (SSr)
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Goodness of fit

How good is the model? 
We can use deviation for 
this as well! 

Compare against the 
deviation of the simplest 
model 

In this case: the mean
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean 

Residual sum of sq. (SSr) 
Squared e from the model
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Goodness of fit
Total sum of squares (SSt) 

Squared e from the mean 

Residual sum of sq. (SSr) 
Squared e from the model 

Model sum of squares (SSm) 
SSt – SSr
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Goodness of fit
R-square model fit 

R2 = SSm / SSt 
Amount of variation in Y 
explained by the model 

Note: In simple regression 
(one X), R2 = rxy2
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Multiple Regression
outcomei = model + errori 

Multiple regression: 
The model is a line with an intercept (a) and several slopes 
(b1…bn) 

Yi = a + b1X1i + b2X2i + … + bnXni + ei 

This means you can predict satisfaction using usability and 
gender, in each case controlling for the other variable 

Note: bs are partial correlations (not the same as r!)



Multiple Regression

E.g.: satisfactioni = 1.00 + 2.00*usabilityi + 1.50*genderi + ei 

For every 1 point increase in usability, satisfaction is 
expected to increase by 2 points, controlling for gender 
Controlling for usability, the satisfaction for males (1) is 
expected to be 1.5 points higher than for females (0)



Multiple Regression

Why “controlling for”? 
There may be a difference in usability between males and 
females! 

E.g. if males’ usability is 0.5 points higher on average, then 
the males in our sample are expected to have a 1.5 + 2*0.5 = 
2.5 point higher satisfaction  

1.5 points because of their gender, 1 point because of their 
higher average usability



Interaction effects
satisfactioni = 1.00 + 2.00*usabilityi + 1.50*genderi + 
1.20*usabilityi*genderi + ei 

For females (0), for every 1 point increase in usability, 
satisfaction is expected to increase by 2 points 
At usability = 0, the satisfaction for males (1) is expected to 
be 1.5 points higher than for females (0) 
For males (1), the effect of usability is 1.2 points higher than 
for females (i.e. 3.2 points per one point of usability) 
For a 1-point higher usability, the effect of gender is 1.2 
points higher (i.e. 2.7 points difference at usability = 1)



Comparisons

Say, satisfactioni = 1.40 + 2.00*usabilityi + 1.30*controli + ei 

Can you compare the effect of usability with the effect of 
control? 

Depends on the scale! 

Solution: standardize! 
b*SDy/SDx 
relative predictive power



Goodness of fit

R2 = SSm / SSt 
Same as before, but R2 is now called the “multiple R2” 
Combined effect of all predictors 
Total variance in Y explained by all Xes in the model 

Note: R2 is the sum of part correlations (plus overlap)  
It is also the square of the correlation between Y and the 
predicted value of Y



Testing a predictor
If a predictor is bad, its slope 
(b) will be almost zero (like 
the mean) 

A good predictor has a 
slope that is significantly 
different from zero 

Compare slope (b) against 
variability of slope (SEb): 

t = b/SEb 
with df = N - p - 1
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p-value
p is the percentage of times you’d expect a result of this 
magnitude or larger if there was actually no effect 

Not the probability the effect happened by chance 
Not the probability that you incorrectly rejected H0 (or 
that H0 is true) 
Not 1 - the probability that H1 is true 
Not 1 - the probability that you find the same effect again 

Note: any statistical test assumes that the null hypothesis is 
true (and then checks how unlikely the observed sample is).



Some assumptions
No measurement error (this problem can be fixed with SEM) 

Errors in Xs result in biased predictors (can be either 
direction) 
Error in Y results in lower R-square, larger SD, so larger 
error and lower beta (not B) 

Eg.: we have a variable S measuring trait Y with 36% error 
This is random noise that does not measure Y 

Result: no regression with S as dependent can have an  
R-squared > 0.64!



Measurement error
Any s.e. will be attenuated 
by the error of S! 

Take for instance this X, 
which potentially explains 
25% of the variance of Y… 

…it only explains 16% of 
the variance of S! 
…and the effect is non-
significant!

X Y

X S

b = 0.50, s.e. = 0.24
R2 = 0.25

b = 0.50, s.e. = 0.30
R2 = 0.16

Z = 2.08, p = 0.038

Z = 1.67, p = 0.096



Measurement error

If we could use Y instead of 
S, we can get much more 
precise tests

X Y

b = 0.40/√(.64) 
= 0.50, s.e. = 0.24

R2 = 0.16/0.64 
= 0.25

Z = 2.08, p = 0.038
AVE = 0.64



Some assumptions
No variables correlated with both X and Y should be left out 
(still a problem in SEM) 

This is called “suppression” 
Usually results in overestimation, e.g. shoe size and 
intelligence (omitted: age) 
Can also result in underestimation,  e.g.  ice cream sales 
and date (omitted: hemisphere) 
Can even result in sign switching (negative suppression): 
race and arrests (omitted: police profiling)



Some assumptions
Outcome should be quantitative, continuous, unbounded 

Not true for: 

- yes-no questions  

- counts (e.g. of clicks) 

- 5-point rating scales 

Otherwise: 

- Non-linear regression 

- Bootstrapping



Non-linear regression
logistic, poisson, ordered-logistic



Logistic regression
Linear regression: 

Yi = a + b1X1i + b2X2i + … + bkXki + ei 

What if Y is binary (0 or 1)? 
We can try to predict the probability of Y=1 — P(Y) 
However, this probability is a number between 0 and 1 
For linear regression, we want an unbounded linear Y! 

Can we find some transformation that allows us to do this? 
Yes: P(Y) = 1 / (1+e–U)



Logistic regression

P(Y) = 1 / (1+e–U) 

Conversely: 
U = ln(P(Y)/(1–P(Y))) 

Interpretation: 
P(Y)/(1–P(Y)) is the odds 
of Y 
Therefore, U is the log 
odds, or logit of Y
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Logistic regression

Since U is unbounded, we can treat it as our regression 
outcome: 

Ui = ln(P(Yi)/(1–P(Yi))) = Yi = a + b1X1i + b2X2i + … + bkXki + 
ei 

We can always transform it back to P(Yi) if we want to: 
P(Yi) = 1 / (1+e–(a + b1X1i + b2X2i + … + bkXki + ei))



Log-likelihood

How do we assess the fit of a logistic regression? 
We calculate the log-likelihood, which is a type of residual 

Log-likelihood = ∑(Yi*ln(P(Yi)) + (1–Yi)*ln(1–P(Yi))) 
where Yi is the observed value, and P(Yi) is the predicted 
value



Log-likelihood
Log-likelihood = ∑(Yi*ln(P(Yi)) + (1–Yi)*ln(1–P(Yi))) 

If Yi = 1, then this simplifies to ln(P(Yi))  
which is zero when the prediction is correct (P(Yi)=1) but 
gets a large (negative) value if the prediction is incorrect 
(P(Yi) is closer to 0) 

If Yi = 0, then this simplifies to ln(1–P(Yi))  
which is zero when the prediction is correct (P(Yi)=0) but 
gets a large (negative) value if the prediction is incorrect 
(P(Yi) is closer to 1)



Deviance (–2LL)

A more useful measure is deviance (a.k.a. –2LL) 
–2 * log-likelihood 

Difference can be used to compare nested models  

Likelihood ratio: χ2 = –2LLbaseline – –2LLnew 

Chi-square distribution with knew – kbaseline df 

We will use this a lot in CFA and SEM to compare different 
models!



Coefficients

How to interpret the b coefficients? 
b is the increase in U for each increase of X 
b is the increase in ln(P(Y)/(1–P(Y))) for each increase in X 
eb is the ratio of P(Y)/(1–P(Y)) for each increase in X 
eb is the odds ratio



Coefficients
Odds ratio examples: 

If eb > 1: The odds of Y are eb times as high for each increase 
in X 

E.g. eb = 3: The odds of Y are 3 times as high for each 
increase in X 

If eb < 1: The odds of Y are 1/eb times as low for each increase 
in X 

E.g. eb = .333: The odds of Y are 3 times as low for each 
increase in X



Coefficients

If eb = 1.xx: each 1 pt increase in X leads to a xx% increase in 
the odds of Y 

E.g. eb = 1.30: The odds of Y are 30% higher for each 
increase in X 

If eb = 0.xx: each 1pt increase in X leads to a (100-xx)% 
decrease in the odds of Y 

eb = 0.70: The odds of Y are 30% lower for each increase in 
X



Problems
Some times a logistic regression does not converge 

You will get weirdly large standard errors 

1. You have no or little data for some combinations of Xs 
This is especially problematic when Xs are nominal 

2. One or a combination of Xs are a perfect predictor of Y 
The odds ratios are infinite! 

Solution: 
Collect more data, or use a simpler model!



Poisson regression
Count variables often look 
like this 

Examples: # of purchases, 
# of clicks, time*, price* 

Not normal, heteroscedastic! 

Can we find some 
transformation that makes 
this work? 

Yes: Y = eU
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Coefficients
How to interpret the b coefficients? 

b is the increase in U for each increase of X 
b is the increase in the log rate of Y for each increase in X 
eb is the ratio of rate Y for each increase in X 
eb is the rate ratio 

Why the ratio? 
b = log(ratex+1) – log(ratex) = log(ratex+1 / ratex) 
therefore, eb = ratex+1 / ratex



Ordered logistic

Question: “I only act to satisfy immediate concerns, figuring 
the future will take care of itself.” 

Answer categories:  
1=extremely uncharacteristic 
2=somewhat uncharacteristic  
3=uncertain 
4=somewhat characteristic 
5=extremely characteristic



A problem…

This is ordinal, not interval! 
Is the difference between “extremely uncharacteristic” and 
“somewhat uncharacteristic” the same as the difference 
between “uncertain” and “somewhat characteristic”? 

Also, likely not very normally distributed! 

How can we solve these problems?



Logistic regression

P(
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Ordered logistic
P(
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Coefficients
The model estimates intercepts for each threshold  

1|2, 2|3, 3|4, 4|5 

These thresholds are the log odds of any person having at 
least this value 

How to interpret the b coefficients? 
eb is the odds ratio for a 1pt increase in X 
e.g. if the odds ratio is 1.40, then the odds of a higher value 
increase by 40% if X is 1 higher



Bootstrapping
as a way to solve problems with normality



Bootstrapping

What if we have problems? (e.g. heteroscedasticity, non-
normality, outliers, non-linearity) 

Use bootstrapping! 

In CFA and SEM, we are going to use bootstrapped results 
by default



Bootstrapping

1. Treat your sample like a population of size N 

2. Sample N items (with replacement!) from this population 

3. Calculate the test statistic on this sample 

4. Repeat MANY times (like, 1000 times) 

5. Get the SE and confidence interval from the data 
For 95% CI: order the data,  take the value of  item # 25 
(lower bound) and item # 975 (upper bound)



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw  
 


